Relationships between Residence Time and Cyanobacterial Blooms in a Nutrient-Rich River System

Michael F. Coveney, John C. Hendrickson, Erich R. Marzolf, Rolland S. Fulton, Jian J. Di, Clifford P. Neubauer, Dean R. Dobberfuhl, Greeneville B. Hall

St. Johns River Water Management District, Palatka, FL, USA

Hans W. Paerl University of North Carolina Chapel Hill, Institute of Marine Sciences, Morehead City, NC, USA

Edward J. Phlips University of Florida, Gainesville, FL, USA

St. Johns River Water Management District

Residence Time and Cyanobacterial Blooms in the St. Johns River

Outline

- Existing impairment in water quality due to nutrients/algal blooms
- 2. Relationships between algal blooms, nutrients, and hydrology
- 3. Thresholds for adverse ecological effects of algal blooms
- 4. Would water withdrawals exacerbate the adverse effects of algal blooms?

Water Bodies in the St. Johns River Basin Impaired by Excess Nutrients

Water bodies with established total maximum daily loads (TMDLs) or listed as impaired by the Florida Dept of Environmental Protection

28°0'0"N

^{82°0&#}x27;0"W

Chlorophyll-a Concentration 1995-2005

St. Johns River at Mandarin, August 2005, Microcystis

Relationships Water Chemistry – Water Age (April-Oct, log Y-axes, 1995-2005)

Chl-a vs TP Relationship Slope Depends on Water Age

Negative relationship between Chl-a and TP at short retention times (LG & Pal p = 0.05, Racy NS) Positive relationship between Chl-a and TP at long retention times (All regressions p < 0.05)

Monthly mean values, Apr – Oct, 1995 – 2005; log Y-scales; regressions ln(y) = mx+b

Hydro-Ecological Models

- Predict algal bloom metrics (dependent variables)
 - Bloom magnitude (Chl-a) Bloom duration
 - Dinoflagellate abundance $-N_2$ -Fixation
- Use hydrologic prediction (independent) variables: Water age and variables derived from water age
- Multiple linear and logistic regression
- Data sets 11 yr (1995 2005)

Example of Ecological Metric - Algal Bloom Duration

Abundance of zooplankton, e.g. cladocera, is reduced during extended algal blooms

Decline in Zooplankton – Seasonal or Algal Bloom Effect?

Hydro-Ecological Models Dependent Variables: Algal Bloom Metrics

Algal Bloom Metric	Effect(s)	Measured Variable
Duration of freshwater algal blooms	Altered zooplankton community; reduction in fish production	Duration of longest annual bloom
Magnitude of freshwater algal blooms	 Altered phytoplankton community; cyanobacterial toxins Depletion of dissolved oxygen; effects on fish reproduction, growth, and mortality 	Maximum annual bloom chl-a
Change (Δ) in N load	Additional N loading	Annual mass N added via N ₂ -fixation
Marine algal blooms	Potential toxic species	Maximum annual dinoflagellate biovolume

Prediction (Independent) Variables Based on Water Age (Residence Time)

1) <u>Water age</u> for five quarterly periods starting with the last quarter of the previous year, plus two growth season periods

 April-Oct

 April-Aug

 A
 B
 C
 D
 E

 Oct-Dec
 Jan-Mar
 Apr-Jun
 Jul-Sep
 Oct-Dec

2) Include <u>mean</u>, <u>maximum</u>, and <u>minimum</u> water age for each period

3) Include the <u>inverse</u> of each water age. Inverse water age is positively related to flow but without negative values at low-flows

Monthly mean values Racy Pt & SJSR16

Hydro-Ecological Models multiple linear and logistic regression

- 8 regression models needed to predict 4 algal bloom metrics across multiple river segments
- Used 7 linear regression models and 1 logistic regression model
- Linear regression models
 - 3 to 7 independent variables
 - Adjusted R² values of 0.80 to 0.97

Example – Prediction of Maximal Bloom Chl-a

Multiple Linear Regression Adjusted $R^2 = 0.88$

Variable	Std Regr Coeff
MinAgeD	-2.318
invMinAgeD	-1.764
MeanAgeD	1.367
MaxAgeE	1.297
invMeanAgeE	0.755
invMean_Age_Apr_Oct	0.636
invMaxAgeA	0.540

Data set: Segments 3 & 4 LG12 & Racy Pt

Conclusions - 1

- The St. Johns River is impaired by cyanobacterial blooms caused by high nutrient levels
- Blooms are summertime events and are exacerbated by low-discharge
- Blooms cause altered food webs, low DO, algal toxins, and increased N loading through N₂fixation

Conclusions-2

- Relationships between algal blooms and nutrients depend strongly on hydrology
- At low river discharge:
 - Lower phosphorus, dissolved color, and turbulence
 - Increased chl-a (relaxed light limitation)
- Algal bloom metrics (e.g. magnitude, duration) are predictable from residence time (water age) with regression models
- Modeled water withdrawals (~10⁶ m³ d⁻¹ *) caused negligible worsening in algal blooms

* 262 x 10⁶ gal d⁻¹

Any Questions?

St. Johns River Water Management District The St. Johns River Water Supply Impact Study Final Report: *Chapter 8, Plankton* http://floridaswater.com/watersupplyimpactstudy/